
β-hydroxybutyrate: Past, Present and Future

James H. Nichols, Ph.D., DABCC, FACB Professor of Pathology Tufts University School of Medicine Medical Director, Clinical Chemistry Baystate Health, Springfield, MA

> Patrick O'Donnell D.O. BMC Pathology PGY3

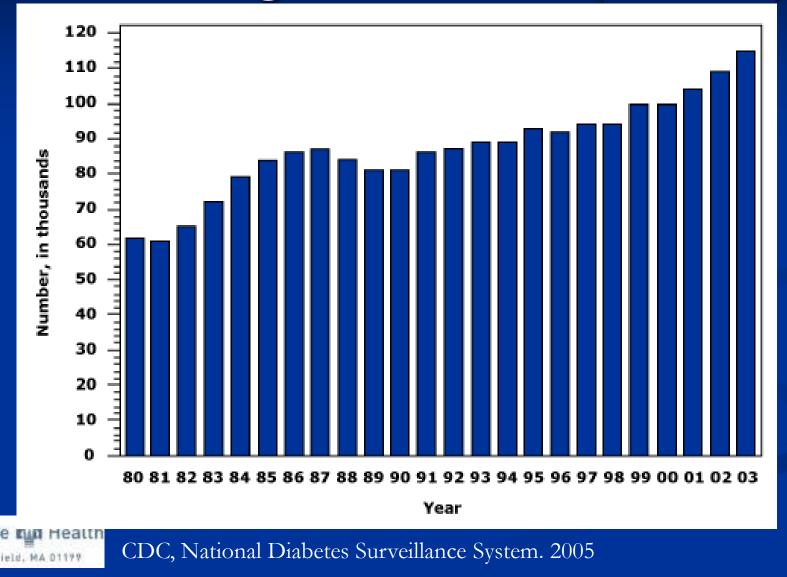
Acknowledgements

Patrick O'Donnell D.O.
 BMC Pathology PGY3

Resident in Pathology, on Chemistry Rotation
Conducted literature search
Drafted much of this presentation for a case presentation while on rotation

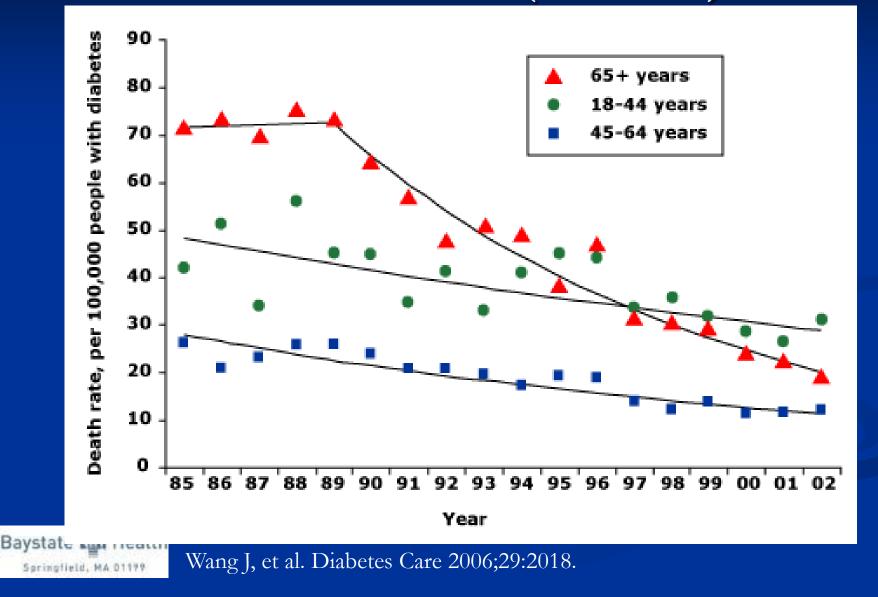
Diabetic Ketoacidosis

- Life-threatening complication of untreated diabetes mellitus (chronic high blood sugar)
- Insulin deficiency and stress hormones combine to cause DKA
- Was once the leading cause of death among Type I diabetics before insulin was available
 Characterized by hyperglycemia, acidosis and ketone bodies.


DKA Epidemiology

<u>Type I Diabetes</u>

- Rarely Type II Diabetes in patients under extreme stress (serious infection, trauma)
- Young>Old, F>M (most common cause of death in diabetics under <20 y/o)</p>
- \$1 out of every \$4 spent on direct medical care for adult patients with Type I DM
- Annual hospital costs in U.S. over \$1 billion
- Mortality in DKA most commonly due to underlying precipitating illness and NOT due to metabolic consequences of hyperglycemia or ketoacidosis
 In 2003 CDC Nat'l DM Surveillance Program : 115K discharges for DKA in the U.S.



Number of hospital discharges with DKA as first listed diagnosis in the U.S. (1980-2003)

Baystat

Age Specific Death Rates for Hyperglycemic Crisis in the U.S. (1985-2002)

Clinical Presentation

- Classic triad of polydipsia, polyuria, polyphagia
- Vomiting, abdominal pain
- Increased or deep respirations (Kussmaul)
- Signs of dehydration
- Weight loss, muscle wasting
- Fruity/medicine breath
- Cerebral edema
- CNS depression/coma

Typical Case

- 9 yo boy presents to clinic with "6 day history of stomach pain and diarrhea." "Vomiting started 2 days ago and has persisted."
 - (+) weight loss
 - PE: HR 140, RR 28, T97.8 Weight: 27 Kg (59 lbs)
 - Tacky mucous membranes
 - Abd soft, (+)BS, mild left tenderness
 - DX: viral gastroenteritis with mild dehydration
- Returned to ER 24 hours later
 - PE: cachectic (low weight), quiet, tired, uncooperative, (+) ketotic breath

Etiology

DKA violates rules of common sense Increased insulin requirement despite decreased food intake Marked urine output in setting of dehydration Catabolic state in setting of hyperglycemia and hyperlipidemia

Pathogenesis

Two major causes of hyperglycemia and ketoacidosis in uncontrolled diabetics

- 1. Insulin deficiency is the primary defect
- 2. Glucagon excess
- Normal patients
 - Increased glucose >> Insulin release by pancreatic
 Beta cells reduces glycogenolysis and gluconeogenesis
 by the liver
 - Increase glucose uptake by skeletal muscle and adipose tissue
 - Insulin inhibits glucagon secretion directly and at the gene level in pancreatic alpha cells

Pathogenesis, cont.

DKA is precipitated by stress

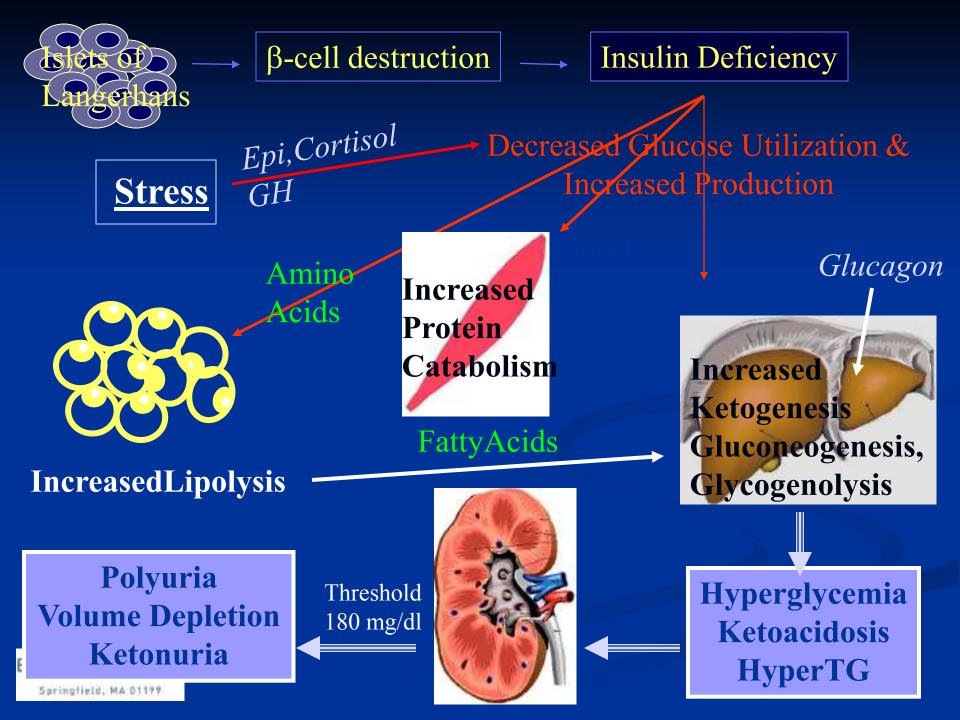
- Increase the secretion of glucagon and cortisol and catecholamines
- Some common "stressors":
 - Pneumonia, gastroenteritis, UTI, pancreatitis, MI, stroke, trauma, alcohol and drug abuse

Pathophysiology

- Impaired insulin secretion
- Anti-insulin action
- Promoting catabolism
- Dec glucose utilization

Hormone Epi Epi, cortisol, GH All Epi, cortisol, GH

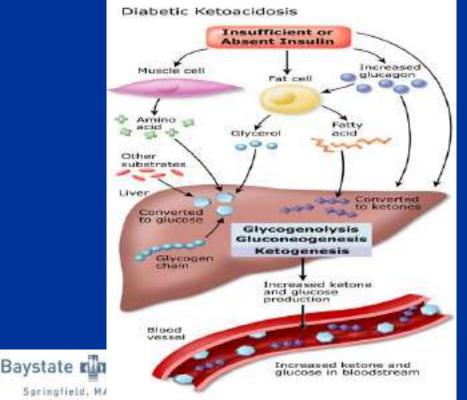
Andrew J. Bauer. Diabetic Ketoacidosis Gran Grounds. Walter Reed Army Medical Center. <u>www.nccpeds.com/powerpoints/DKA.ppt#257,1,DIABETICKETOACIDOSIS</u>


Pathogenesis, cont.

- Serum glucose of DKA usually <800 mg/dl
- Hyperglycemia in DKA due to 3 main processes:
 - 1. Impaired glucose utilization in peripheral tissues
 - 2. Increased glycogenolysis

Baystate nin Health

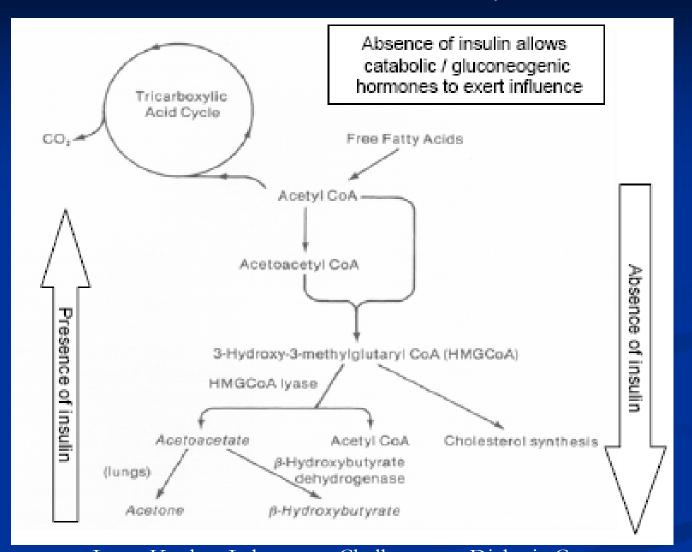
Springfield, MA D1


- 3. Increased gluconeogenesis
 - -hepatic gluconeogenesis promoted by
 - (1.) increased delivery of precursors (alanine, glycerol) due to fat and protein breakdown
 - (2.) increased secretion of glucagon due to loss of inhibition by low insulin levels
- Glucosuria in DKA initially minimizes rise in serum glucose
 - Osmotic diuresis caused by glucosuria leads to volume depletion and decreased GFR that limits additional glucose excretion in the urine

Pathogenesis, ketoacidosis

Insulin deficiency causes increased lipolysis which increases FFA delivery to the liver

shuttled to the mitochondria, combined with effects of glucagon promotes ketone synthesis



- Major ketones produced are <u>acetoacetic</u> <u>acid</u> and <u>β - hydroxybutyric acid</u> and <u>acetone</u>

- Normally a 1:1 of Acetoacetate:βOHB

Watermark Animation and Illustration. dtc.ucsf.edu/images/illustrations/5.e_rev1.jpg

In DKA, the ratio of Acetoacetate: β OHB shifts to 1:6.

Larry Kaplan. Laboratory Challenges to Diabetic Care. www.columbia.edu/itc/hs/medical/selective/advclinicalPathology/2005/lecture/DiabeticCare KaplanBW.pdf

Laboratory Evaluation Severity of DKA is determined primarily by the pH, bicarbonate, and mental status, not glucose

TABLE 2

Baystate nin Health

Springfield, MA 01199

Diagnostic Criteria for Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State

	Mild DKA	Moderate DKA	Severe DKA	HHS
Plasma glucose (mg per dL [mmol per L])	> 250 (13.9)	> 250	> 250	> 600 (33.3)
Arterial pH	7.25 to 7.30	7.00 to 7.24	< 7.00	> 7.30
Serum bicarbonate (mEq per L)	15 to 18	10 to < 15	< 10	> 15
Urine ketones	Positive	Positive	Positive	Small
Serum ketones	Positive	Positive	Positive	Small
Beta-hydroxybutyrate	High	High	High	Normal or elevated ^{on}
Effective serum osmolality (mOsm per kg)*	Variable	Variable	Variable	> 320
Anion gap}	> 10	> 12	> 12	Variable
Alteration in sensoria or mental obtundation	Alert	Alert/drowsy	Stupor/coma	Stupor/coma

DKA = diabetic ketoachiosis; HHS = hyperosmolar hyperglycemic state.

*—Effective serum osmolality = $2 \times \text{measured Na}$ (mEq per L) + (glucose [mg per dL] + 18).

 \dagger —Anion gap = Na⁺ - (Cl⁻ + HCO₂- [mEq per L]).

Adapted with permission from Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, et al. Hyperglycemic crises in diabetes. Diabetes Care 2004;27(suppl 1):595, with additional information from reference 20.

Trachtenburg DE. Diabetic Ketoacidosis. Am Fam Physician 2005;71:1705-22.

Laboratory Evaluation

Serum Osmolality (mOsm/kg)

- 2 x Na(meq/l) + plasma glucose (mg/dl)/18 + BUN/2.8
- If serum osmolality < 320 mOsm/kg think of etiologies other than DKA

Metabolic Acidosis

- Due to Ketones
- Anion Gap
- $\blacksquare Na (Cl + HCO3)$
- pH Low

Baystate nin Health

Springfield, MA 0119

Differential diagnosis of an elevated osmolal ga				
With anion gap metabolic acidosis				
Ethylene alveolingestion				
Methanol ingestion				
Formaldehyde ingestion				
End-stage renal disease (GFR ${<}10)$ without regular dialysis				
Paraldehyde ingestion				
Diabetic ketoacidosis				
Alcoholic ketoacidosis				
Lactic acidosis				
Without metabolic acidosis				
Tsopropanol ingestion				
Diethyl ether ingestion				
Mannitol use				
Severe hyperproteinemia				
Severe hyperlipidemia				

UpToDate. Osmolal Gap. Burton D. Rose, MD. 2007.

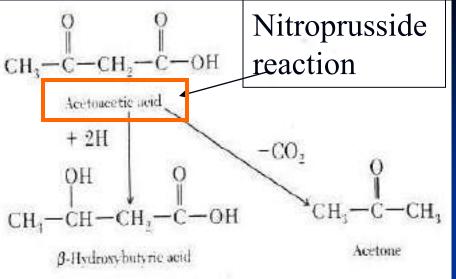
Electrolytes

Na

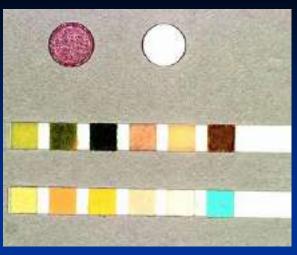
- Depressed 1.6 mEq/l per 100mg% glucose increase
- Depletion due to urinary losses/vomiting
- Osmotic dilution
- Remember hyperlipidemia can factitiously lower Na

L K

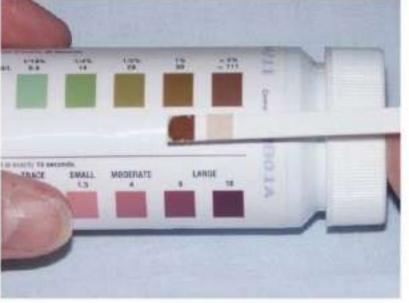
- Serum K is often normal, but total body K is low
- Can appear elevated due to lack of insulin and metabolic acidosis >> drives K extracellularly
- SERIOUS issues can arise here with treatment.....K can bottom out!
- HCO₃
 - Always low in DKA
 - This extracellular ion is the body's first line buffer against metabolic acidosis

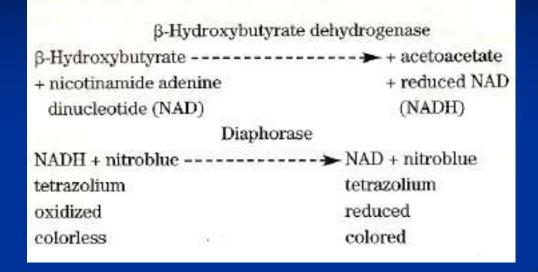


Ketone Bodies


B-hydroxybutyrate accounts for >75% of the ketones seen in ketoacidosis

- $\blacksquare > 3 mg/dl$ is abnormal
- Historically, ketoacidosis dx'd and monitored in urine and serum with nitroprusside based tests
 - Ketostix, Acetest (colorimetric visual interpretationsemiquantitative)
 - Nitroprusside based tests measure acetoacetate
 - Acetoacetate is not predominant ketone body in DKA





Baystate 🖬 Health

BOHB Quantitation

Purple color (580nm) proportional to the concentration of β OHB

Normal: 0 – 0.3 mM/l Ketosis: greater than 0.3mM/l Possible ketoacidosis: greater than 5mM/l

Ketone Bodies, cont.

- In severe ketoacidosis:
 - βOHB:acetoacetate favors βOHB, nitroprusside test could be negative or weakly positive despite severe ketoacidosis
- When ketoacidosis improves the βOHB : acetoacetate favors acetoacetate, nitroprusside tests will have a stronger reaction even though ketoacidosis is actually improving
 - Fall of acetoacetate lags behind the improvement of ketoacidosis
- Drugs can cause a false positive nitroprusside test
 ACEi
 Baystate The Health

Ketone Bodies, cont.

According to the American Diabetes Association - ... "currently available urine ketone tests are not reliable for diagnosing or monitoring treatment of DKA"

Testing for blood βOHB

Quantitative test...can use to diagnose/monitor ketoacidosis

- Site experiences (Henry Ford Hospital) reported decreased TAT
- No subjectivity in test, Number vs subjectivity of color change
- Reduction in laboratory testing in patients with ketoacidosis (monitor BOHB and anion gap for trends)
- COST savings
- Shorter triage time, faster time to diagnosis

Other causes of ketoacidosis....

Malnutrition...alcoholism..

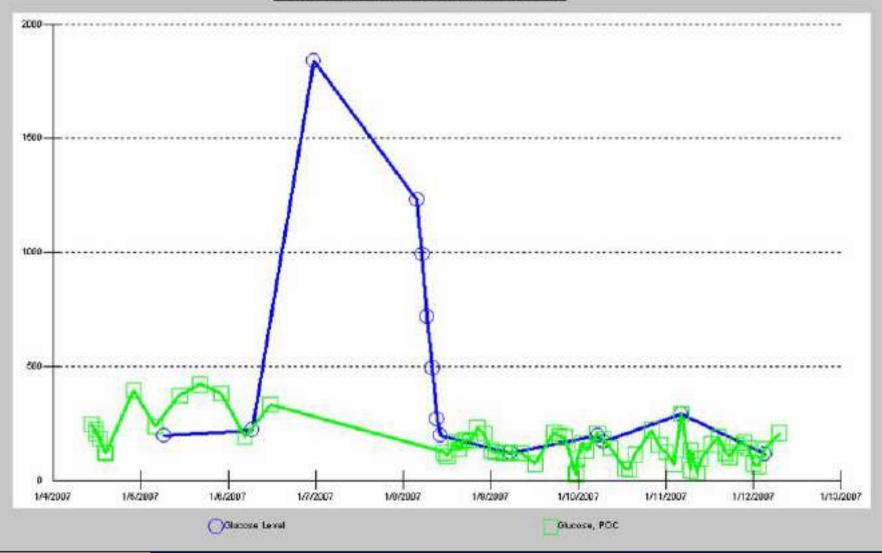
Alcoholics

- Decreased carbohydrate intake (reduced insulin sec.)
- Increased glucagon secretion
- Alcohol induces inhibition of gluconeogenesis and stimulates lipolysis >>>increased ketoacids
- High anion gap metabolic acidosis, elevated osmolal gap
- Hyperglycemia can occur but not usually as high as the levels seen in DKA
- \blacksquare If glucose is not elevated and βOHB increased , ketoacidosis due to starvation/alcoholism

Up to 90% of ketones can be due to β OHB

βOHB.....other uses?

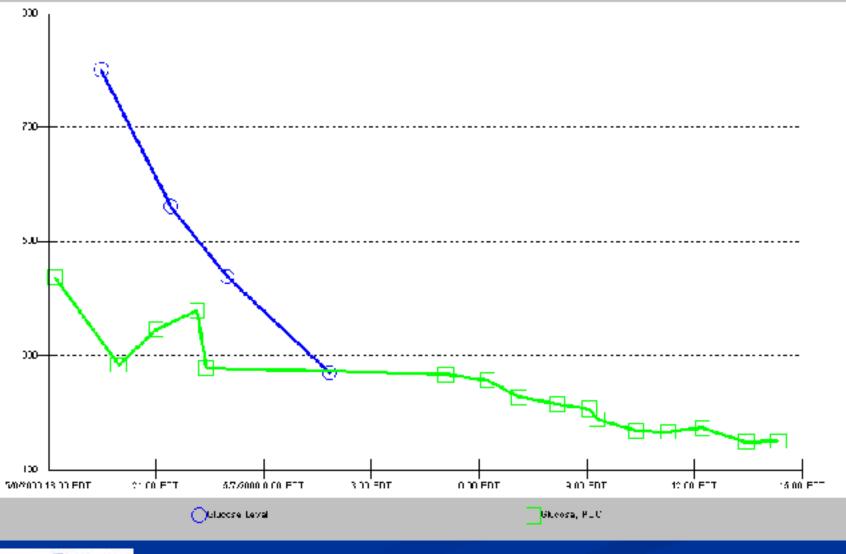
Dx Pregnant patients
 Dx gestational diabetes
 Monitoring DKA therapy
 βOHB as an adjunct to monitoring diabetic control in addition to glucose testing


βOHB.....other uses?

Detect ketosis in ED!

- Known <u>limitation</u> of glucose meters
- Erroneous results reported for all current meters
- Package insert example: "test results may be erroneously low if the patient is severely dehydrated or severely hypotensive, in shock or in a hyperglycemic-hyperosmolar state (with or without ketosis)
- Cause unknown, several theories:
 - Poor peripheral circulation when in "shock"
 - Acidosis, ketone bodies or other interferent in circulation

Glucose Level & Glucose, POC


Baystate a Health

Glucose Level & Glucose, POC

Glucose Level & Glucose, POC

Baystate a Health

DKA Glucose Meter Interference

Baystate Medical Center ED study

- 50 bed ED, Level 1 trauma and pediatric referral center
- Over 100,000 visits annually
- ED staff need hourly glucose levels with rapid results to manage insulin dose of DKA patients
- Lab TAT approx 1 hour for stat testing, ED is drawing next sample without knowing results of previous sample
- Investigated differences of glucose meters vs lab results in DKA patients and whether an offset could be used to manage insulin.

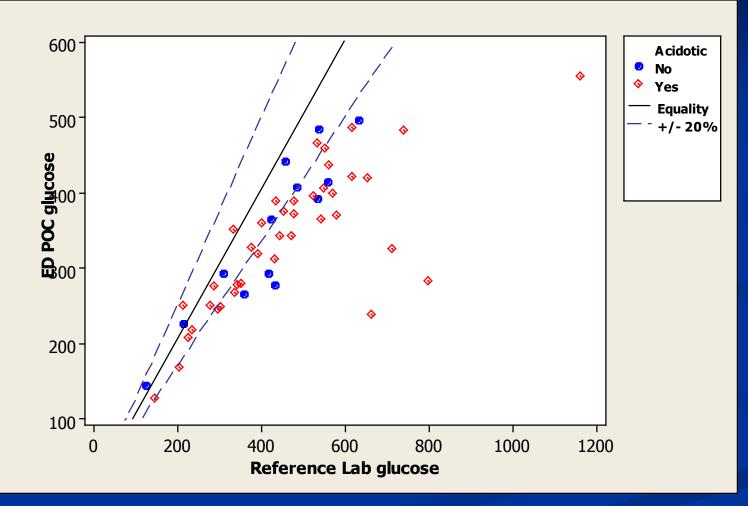
DKA Glucose Meter Interference

Methods

- 54 consecutive blood draws from suspected DKA patients
- Green-top heparinized 3 mL blood sample
- Drop of sample tested by glucose meter using Diff-Safe collection device without removing stopper
- Send remainder to lab for stat analysis
- Collect confirmed diagnosis, bicarb levels (degree of metabolic acidosis), and βOHB levels (ketonemia).

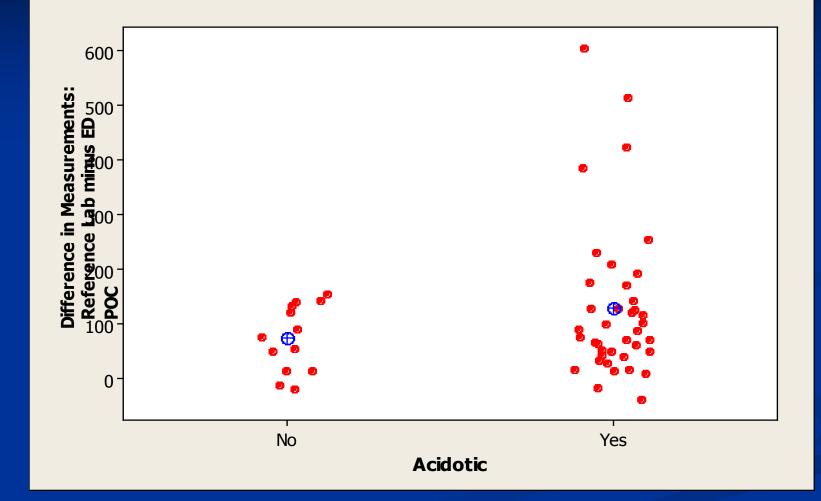
DKA Glucose Meter Interference

Demographics


- Age 10 86 years
- 63% female
- 46% final diagnosis of DKA

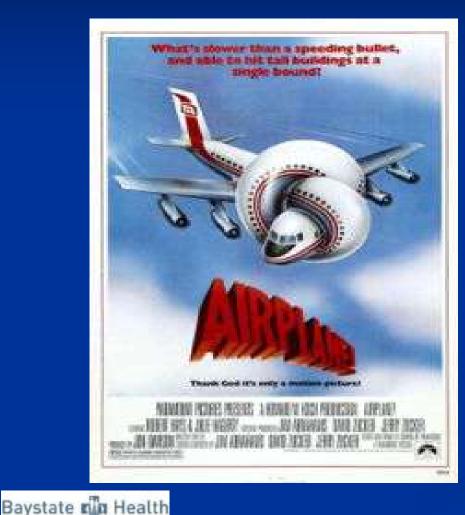
Conclusions – "Use lab results when managing DKA pts"

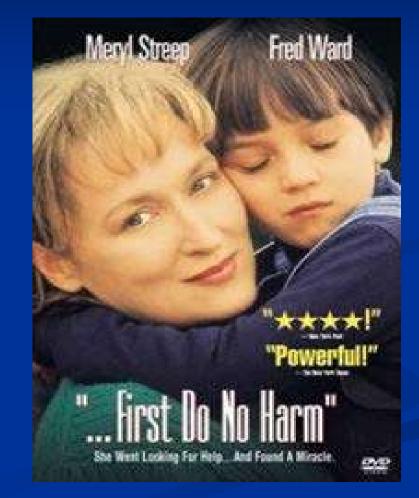
- POC glucose underestimated lab glucose in 50/54 cases (93%)
- Only 52% of POC results within +/- 20% of lab value
- Higher the glucose level, greater difference (r=0.87, p<.0001)
- No association between acidosis and glucose correlation


POC vs Lab Glucose in DKA

Blank FSJ, Miller M, Nichols J et al.; J Emerg Nursing 2009;35(2):93-6.

Baystate 🖬 Health


POC vs Lab Glucose in DKA

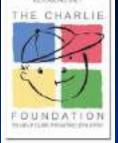

Blank FSJ, Miller M, Nichols J et al.; J Emerg Nursing 2009;35(2):93-6.

βOHB.....other uses?

Springfield, MA 01199

Jim Abrahams

- The movies "Airplane" and "First Do No Harm" both share the same Producer/Director.
- Other Jim Abrahams movies include:
 - Big business (Bette Middler/Lily Tomlin)
 - Cocaine Blues (look at cocaine use starting with Sigmund Freud)
 - Coming to America (Eddie Murphy)
 - Cry Baby (A John Waters film with Johnny Depp)
- "First Do No Harm" was made for TV drama, outside Jim Abrahams typically movie genre.



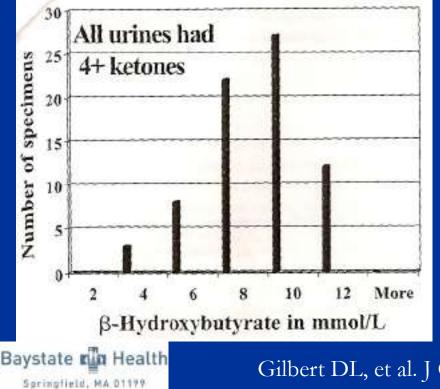
"First Do No Harm"

- Ketogenic diet used since the 1920's....fell out of popularity with the development of anticonvulsants.....
- Lennox-gastaeut syndrome epilepsy refractive to drug therapy
- Meryl Streep (Lori) is met with narrow-minded resistance from Robbie's doctor, who is prepared to take legal action to prevent Lori from removing him from the hospital
- This movie is an indictment of those in the medical profession who discuss only the treatment options they favor
- The Charlie Foundation funded a multi-centre study that was published in 1996, which marked the beginning of renewed scientific interest in the diet.

Not an FDA approved use of this test, off-label use of product.

The ketogenic diet and seizure control.

- High fat, adequate protein, low carbohydrate diet designed to mimic the effects of fasting.
- Increased ketone bodies....become the primary energy source for the brain.
- Well documented in unblinded studies to improve seizure control in children with difficult to control seizures
 - In general at least a 50% reduction in seizure frequency in 50% of the patients studied
 - Mechanism is unknown


In the past monitored treatment compliance with nitroprusside based urine dipstick
Baystate The Health

Not an FDA approved use of this test, off-label use of product.

Original Article

The Ketogenic Diet: Seizure Control Correlates Better With Serum β-Hydroxybutyrate Than With Urine Ketones

Donald L. Gilbert, MD; Paula L. Pyzik, BA; John M. Freeman, MD

Table 2.	Probability of Seizure Control	
3 to 6 Me	onths After Diet Onset (N = 54)	

β-Hydroxybutyrate Level	> 50% Control	> 90% Control	100% Control 8% 43% (.039)*
< 4 mmol/L (n = 12) > 4 mmol/L (n = 42)	33% 83% (.002)*	8% 48% (.018)*	
< 5 mmol/L (n = 26) > 5 mmol/L (n = 28) Any level	62% 82% (.091)† 72%	31% 46% (.238)† 39%	27% 43% (.221)† 35%

*Above versus below the threshold of 4 mmol/L, children were statistically significantly more likely to achieve higher levels of seizure control (Fisher's exact P values, one call with expected count less than 5).

*Above versus below the threshold of 5 mmol/L, children were not statistically significantly more likely to achieve higher levels of seizure control (chi square P values).

Gilbert DL, et al. J Child Neurol. 2000;15:787-90.

Summary

- Past: Urine dipstick nitroprusside has historically been utilized to screen and monitor diabetic ketoacidosis still widely marketed method.
 Present: Serum SOHB levels give a direct
- Present: Serum βOHB levels give a direct measurement of blood ketones, and are clearly a better method of Dx and managing ketosis
- Future: Potential uses of βOHB for managing compliance and personalizing antiepileptic and research into diets that promote ketosis.

